Blocking temperature in magnetic nanoclusters.

نویسندگان

  • Burhan Bakar
  • L F Lemmens
چکیده

A recent study of non-extensive phase transitions in nuclei and nuclear clusters needs a probability model compatible with the appropriate Hamiltonian. For magnetic molecules a representation of the evolution by a Markov process achieves the required probability model that is used to study the probability density function (PDF) of the order parameter, i.e., the magnetization. The existence of one or more modes in this PDF is an indication for the super-paramagnetic transition of the cluster. This allows us to determine the factors that influence the blocking temperature, i.e., the temperature related to the change of the number of modes in the density. It turns out that for our model, rather than the evolution of the system implied by the Hamiltonian, the high temperature density of the magnetization is the important factor for the temperature of the transition. We find that an initial probability density function with a high entropy leads to a magnetic cluster with a high blocking temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Properties and the Superatom Character of 13-Atom Platinum Nanoclusters

13-atom platinum nanoclusters have been synthesized quantitatively in the pores of the zeolites NaY and KL. They reveal highly interesting magnetic properties like high-spin states, a blocking temperature, and super-diamagnetism, depending heavily on the loading of chemisorbed hydrogen. Additionally, EPR active states are observed. All of these magnetic properties are understood best if one con...

متن کامل

Size Evolution Study of the Electronic and Magnetic Properties of MgO Nanoclusters

Magnesium oxide nanoclusters have attracted much attention due to their potential applications to catalysis and novel optoelectronic materials. In the present study, we have studied the electronic and magnetic properties of the stoichiometric magnesium oxide nanoclusters (MgO)n  for n = 2-20. Although the binding energy increases with the size of the cluster, it  re...

متن کامل

Epitaxial growth, magnetic properties, and lattice dynamics of Fe nanoclusters on GaAs(001)

Epitaxial bcc-Fe 001 ultrathin films have been grown at 50 °C on reconstructed GaAs 001 4 6 surfaces and investigated in situ in ultrahigh vacuum UHV by reflection high-energy electron diffraction, scanning tunneling microscopy STM , x-ray photoelectron spectroscopy XPS , and Fe conversion electron Mössbauer spectroscopy CEMS . For tFe=1 ML monolayer Fe coverage, isolated Fe nanoclusters are ar...

متن کامل

Reversible Photoisomerization of Spiropyran on the Surfaces of Au25 Nanoclusters.

Au25 nanoclusters functionalized with a spiropyran molecular switch are synthesized via a ligand-exchange reaction at low temperature. The resulting nanoclusters are characterized by optical and NMR spectroscopies as well as by mass spectrometry. Spiropyran bound to nanoclusters isomerizes in a reversible fashion when exposed to UV and visible light, and its properties are similar to those of f...

متن کامل

Fe Nanoclusters on the Ge(001) Surface Studied by Scanning Tunneling Microscopy, Density Functional Theory Calculations and X-Ray Magnetic Circular Dichroism

The growth of Fe nanoclusters on the Ge(001) surface has been studied using lowtemperature scanning tunnelling microscopy (STM) and density functional theory (DFT) calculations. STM results indicate that Fe nucleates on the Ge(001) surface, forming wellordered nanoclusters of uniform size. Depending on the preparation conditions, two types of nanoclusters were observed having either four or six...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 71 4 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2005